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Abstract

A hallmark of human memory is the ability to integrate dis-
crete experiences into cognitive maps. A fundamental form
of this integration is transitive inference (TI), in which over-
lapping premises (e.g., A < B, B < C) are integrated into
a unified representation of a relational hierarchy (A < B <
C). Few existing theories provide a mechanistic account of
this construction of relational knowledge and how it is shaped
by different training conditions. This study builds on re-
cent findings that TI is facilitated by chaining of overlapping
premises, with a new behavioral experiment confirming an ad-
vantage over non-overlapping sequences matched for premise
frequency and spacing. A subsequent simulation study shows
that the chaining effect is captured by a particle filter which
performs approximate Bayesian inference about the latent hi-
erarchy. These results provide a better understanding of how
chaining shapes the construction of relational knowledge in the
face of uncertainty and forgetting.

Keywords: transitive inference; relational learning; particle
filter

People have a remarkable ability to organize separate, but
related, experiences into internal cognitive maps, which then
support flexible inferences about relationships that have not
been directly experienced, as when taking a shortcut for the
first time (Peer, Brunec, Newcombe, & Epstein, 2021) or
making predictions about unobserved links in a social net-
work (Son, Bhandari, & FeldmanHall, 2021). Transitive in-
ference (TI) is a fundamental form of this ability applied to
items organized in a linear hierarchy (e.g., A < B < C). In
TI people learn the relations between adjacent items by en-
coding premise pairs (e.g., A < B, B < C) and are tested
on the ability to make transitive inferences about novel pairs
(e.g., to infer that A < C). The capacity for TI is present
at a young age (Bryant & Trabasso, 1971) and is evident in
a wide range of species (Vasconcelos, 2008), highlighting its
important role in extracting relational knowledge from related
experiences.

There is ongoing debate over the cognitive mechanisms
that are involved in TI, with numerous theories based on sim-
ple forms of associative or reward-driven learning (Frank,
Rudy, & O’Reilly, 2003; Wynne, 1995) as well as retrieval-
based inference at the time of test (Kumaran & McClel-
land, 2012). While multiple cognitive processes may inde-
pendently support TI depending on the nature of the task at
hand, a growing body of evidence suggests that human learn-
ers rely on a constructive process during learning, integrating

premises into a unified mental map of the hierarchy (Hummel
& Holyoak, 2001; Jensen et al., 2015).

Evidence for relational integration during learning comes
from findings that performance improves when training in-
volves chained sequences of overlapping premises across tri-
als (see examples in Figure 1B). In a card sorting TI task
where people rank the items as they are presented with
premises, chaining leads to more accurate solutions compared
to random sequences among preschool children (Andrews &
Halford, 1998; Halford, 1984) and adults with deficits in re-
lational reasoning due to prefrontal lobe damage (Waltz et al.,
1999) or dementia (Waltz et al., 2004). Chaining is thought
to reduce the difficulty of relational integration in these tasks
because they allow learners to combine new information with
a single (immediately preceding) premise, making it easy to
incrementally build a cognitive map of the hierarchy (see also
Foos, Sabol, Smith, & Mynatt, 1976).

Most prior investigations of chained study in TI have in-
volved external representations of the hierarchy (i.e., arrang-
ing cards) and small numbers of premises, leaving it unclear
how premise order affects learning of more complex hierar-
chies over extended periods of training. However, recent re-
sults from Markant (2020) suggest that chaining is beneficial
in a more complex task with 9 item hierarchies. In that study
people preferred to chain premises when they had control
over the training sequence, and the sequences they generated
were more effective than random sequences when presented
to other learners. Although these results suggest that chain-
ing supports relational integration, the effects might also be
attributable to other differences in the training sequences (in-
cluding the relative frequency and spacing of premises from
different parts of the hierarchy), highlighting the need for a
more controlled examination of the effects of chaining in TI.

Current study
The present study had two main goals. The first goal was
to directly compare training sequences that were matched
for premise frequency and spacing but differed in whether
premises overlapped across trials. Participants completed
a TI task in which they studied relations between adjacent
individuals in a social hierarchy. They were then tested
on their ability to reconstruct the hierarchy and their accu-
racy on a TI test. The experimental manipulation concerned
the order of premises during training: In the Chains con-
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dition the premises overlapped from trial to trial, while in
the Jumps condition the premises were presented with the
same frequency and spacing but never overlapped in succes-
sive trials. Based on the results of Markant (2020) I pre-
dicted that chained sequences would facilitate the integration
of premises into a unified representation, leading to more ac-
curate knowledge of the hierarchy.

The second goal of the study was to examine whether
computational models of TI can account for the advantage
of chained study. I present a simulation study comparing
two models from Kumaran, Banino, Blundell, Hassabis, and
Dayan (2016) which formalize the TI problem as estimating
the positions of individuals along a latent, continuous dimen-
sion. The principal aim of the simulation study was to deter-
mine whether these models can account for observed differ-
ences in learning of the hierarchy without assuming any other
differences between conditions.

Experiment
The experiment was conducted online in two sessions sepa-
rated by approximately 5 days. The present paper will focus
on the results of the first session only, which included the
training and test phase of the TI task (Figure 1).

Participants
Students were recruited via an email announcement. N = 44
people completed the study (age M = 23.36 years, SD = 4.88;
59% female, 27% male, 14% no sex indicated). Participants
received $8 for successful completion of both sessions, plus
an additional bonus of up to $4 based on performance in the
test phase (average bonus of $2.71, SD = 1.69). The first
session took an average of 26 minutes (SD = 9.5).

Materials and Procedure
Participants learned about a 9-item social hierarchy made up
of individuals represented by face images (Figure 1A) drawn
from the 10k Adult Faces Database (Bainbridge, Isola, &
Oliva, 2013). Participants were instructed to the learn the
“chain of command” at a fictional company by memorizing
the relationships between adjacent pairs of individuals (e.g.,

that person A is directly supervised by person B). The instruc-
tions included an example of a transitive inference across two
pairs of individuals who did not appear later in the task. Par-
ticipants were therefore fully informed about the nature of the
underlying hierarchy and the learning goal.

Training sequences. The experimental manipulation deter-
mined the order of presentation of the 8 premises (Figure 1B).
In the Chains condition sequences were composed of over-
lapping chains of premises (e.g., A < B, B < C, C < D...),
while in the Jumps condition there was no overlap between
premises in successive trials. The training sequences in the
two conditions were otherwise matched for the relative fre-
quency of premises (with all premises presented equally of-
ten) and the spacing of repeated presentations of the same
premise. In both conditions the sequence of 8 premises was
presented twice in each training block and the direction of
the sequences (forward or backward through the hierarchy)
alternated across blocks, with the direction in the first block
randomized for each participant.

Training phase. The training phase had up to 10 blocks.
Each block began with 16 study trials in which premises were
individually displayed for 2.5 s (Figure 1C). This was fol-
lowed by 16 recall trials (two trials for each premise pair)
presented in random order. Each premise was displayed and
participants were instructed to click on the person who was
higher ranked. No feedback was provided until the end of the
block, at which point participants were told the proportion of
correct responses.

Participants had to complete a minimum of 3 training
blocks. The training phase ended either after 10 blocks or
when participants reached a criterion of 100% correct re-
sponses in a block, indicating that they chose the higher-
ranked individual for every premise pair twice.

Test phase. The training phase was followed by a brief dis-
tractor task in which participants solved a set of arithmetic
problems. They then completed the test phase which in-
cluded a standard forced choice test and a ranking elicita-
tion. There were 72 trials in the forced choice test, with two
repetitions of every possible pairing of items from the hier-
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Figure 2: A: Accuracy on the forced choice test as a function
of the distance between the items in the hierarchy. Error bars
indicate bootstrapped 95% CIs. B: Proportion of participants
who ranked items correctly by their actual rank.

archy (Figure 1D). Recall trials involved premises that were
experienced during the study phase, whereas inference tri-
als involved novel pairings of non-adjacent items. Test trials
were presented in the same manner as the recall trials from
the training phase, with participants instructed to select the
person who was ranked higher in each test pair. No feedback
was presented during the test phase. Following the forced
choice test, participants ranked the nine individuals accord-
ing to their positions in the hierarchy. The images were dis-
played in a random order and the position of each item could
be changed by clicking on arrow buttons.

Results

Three participants were excluded for failing to reach the train-
ing criterion, leaving N = 41 (21 in the Chains condition, 20
in the Jumps condition). The conditions did not differ in the
number of blocks to criterion (Chains: M = 4.48, SD = 2.27;
Jumps: M = 5.4, SD = 1.73; F(1,39) = 2.13, p = .15).

Forced choice test accuracy. Responses on the forced-
choice test were scored according to whether the higher-
ranked individual in each test pair was chosen and were mod-
eled using mixed effects logistic regression with trial type (re-
call vs. inference) and study condition (Chains vs. Jumps) as
fixed effects and random intercepts for participants. An anal-
ysis of deviance indicated a significant effect of study condi-
tion (χ2(1) = 12.28, p < .001). There was no overall effect
of test type (χ2(1) = 3.54, p = .06) but there was a signif-
icant interaction (χ2(1) = 4.10, p = .04). Accuracy in the
Chains condition was significantly higher for both recall tri-
als (Chains: M = .93, SD = .13; Jumps: M = .83, SD = .15;
OR = 5.78, 95% CI [1.46, 22.90], z = 2.50, p = .01) and in-
ference trials (Chains: M = .94, SD = .14; Jumps: M = .77,
SD = .22; OR = 11.59 [3.20, 42.0], z = 3.73, p < .001).

Figure 2A shows accuracy as a function of distance be-

tween the individuals in a test pair. Performance in the Chains
condition was very high, with many participants achieving
perfect accuracy on inferences at all distances. In both con-
ditions there was also evidence of a symbolic distance ef-
fect, such that performance on inference trials improved with
greater distances between the items.

Ranking accuracy. Overall ranking accuracy was calcu-
lated as the proportion of nine items that were ranked in
the correct position. Ranking accuracy was higher in the
Chains condition (M = .90, SD = .29) than the Jumps con-
dition (M = .58, SD = .41; χ2(1) = 50.97, p < .001). Rank-
ing accuracy by position is shown in Figure 2B. In the Chains
condition approximately 90% of participants ranked each in-
dividual correctly across all positions in the hierarchy. In the
Jumps condition ranking accuracy was highest for the end-
points but lower for individuals in the middle of the hierarchy.

Modeling the effect of chained study
The behavioral results demonstrate a clear effect of premise
order on learning of the hierarchy, with chained sequences
leading to high accuracy on both the forced choice and rank-
ing tests. Training sequences that were matched for premise
frequency and spacing but with no overlap between premises
led to poorer recall of the premises in the final test, lower
accuracy on inference trials, and more errors in the elicited
rankings. There was also evidence for a symbolic distance
effect (Moyer & Bayer, 1976) such that accuracy was high-
est for more distant inferences (Figure 2A). These findings
strongly suggest that participants performed the task by con-
structing an integrated cognitive map of the hierarchy as they
learned, and that chained study facilitated this process.

In the remainder of the paper I examine whether these ef-
fects can be captured by existing computational models of TI.
A number of approaches have been taken to model TI, includ-
ing mechanisms related to associative learning, reinforcement
learning, and retrieval-based inference (see Jensen, Terrace,
& Ferrera, 2019). A detailed review of these “model-free”
approaches are beyond the scope of the present paper, but re-
cent work suggests that they often fail to account for human
performance in TI tasks (Jensen et al., 2015). For this rea-
son I focus on two models originally used by Kumaran et al.
(2016) in the context of TI: 1) a particle filter and 2) RL-Elo.

Particle filters are a type of sequential Monte Carlo ap-
proximation to Bayesian inference (Speekenbrink, 2016) in
which a posterior distribution is approximated with a set of
discrete samples (particles). A key advantage of this approach
is the ability to model how information processing constraints
(e.g., limits on time or memory capacity) impact behavior by
varying the number of particles N. Particle filters can cap-
ture order effects and other deviations from the predictions
of optimal Bayesian models in domains such as causal learn-
ing (Abbott & Griffiths, 2011), change detection (Brown &
Steyvers, 2009; Yi, Steyvers, & Lee, 2009), category learn-
ing (Lloyd et al., 2019; Sanborn et al., 2010), and condition-
ing (Daw & Courville, 2008).
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Figure 3: Depiction of the particle filter representation of three items A, B, and C. Each particle serves as a hypothesis about
items’ positions. When the premise A < B is observed, the weights are updated and used to resample the particles, leading to
the proliferation of particles that are consistent with the premise. In the propagation step, the positions are randomly perturbed.
After observing B < C, the resulting particle set includes many particles with the correct ordering of the three items.

Kumaran et al. (2016) used a particle filter to model perfor-
mance in a TI task involving the learning of a social hierarchy.
For this task, the model learns items’ positions along a la-
tent, continuous dimension, using a limited set of particles to
approximate the posterior distribution over positions at each
point during training. The authors also compared the particle
filter to a model with a similar underlying representation but
which uses a learning rule from reinforcement learning (RL-
Elo, described in detail below). Behavior was best-described
by the particle filter overall, although RL-Elo was found to be
a credible alternative during later stages of learning.

In the following I examine whether the effect of chained
study can be seen in the performance of the particle filter and
RL-Elo models when trained with the same sequences as in
the behavioral study. The goal was to explore whether an
advantage from chained sequences emerges for either model
without assuming any other differences between conditions.
Given that participants required an average of 5 blocks (10
repetitions of each premise) to reach the training criterion,
I also compared model performance under varying levels of
random trial-to-trial fluctuation in the estimates of items’ po-
sitions in the hierarchy (akin to forgetting).

Particle filter
The particle filter model is based on the bootstrap fil-
ter (Doucet, De Freitas, & Gordon, 2001) and largely fol-
lows Kumaran et al. (2016). The positions of the nine indi-
viduals are represented as a vector of values V along a con-
tinuous dimension (see Figure 3). Each particle V k can be
viewed as a different hypothesis about items’ positions and is
associated with a weight wk. Particles are randomly initial-
ized with V k

0 ∼N (0,σ0) and uniform weights wk
0 = 1/N for

k = (1, ...,N). For each trial t during training, the particles
are reweighted according to the likelihood of the premise ob-
served on that trial, such that wk

t = g(yt |V k
t−1)wk

t−1 (see below
for description of the likelihood function g). As a result, those
particles for which the underlying values V k match the order
implied by the premises will have greater weight.

Two other common steps in particle filters are resampling
and propagation. In the resampling step, particles are resam-
pled with replacement according to the normalized weights
and the weights are reset to wk

t = 1/N. In the propagation
step, the particles are subjected to random drift according to
the transition probability V k

t+1 ∼ N(V k
t ,σd). Resampling and

propagation allow for the removal of particles that are incon-
sistent with the observed premises and exploration of alter-
native solutions. Other applications of particle filters differ
in the frequency of resampling and propagation, e.g. by only
resampling when the diversity in the particle set drops below
a threshold (Kumaran et al., 2016), which may have conse-
quences for the kind of order effects that emerge (Abbott &
Griffiths, 2011). For simplicity I assume that both resampling
and propagation occur on every trial.

Likelihood function: Local vs. global updating. I ex-
plored two variants of the model based on whether the likeli-
hood evaluates local information (limited to the premise ob-
served on the current trial) or global information (accounting
for the positions of items that are not observed on the cur-
rent trial). On each study trial the learner observes a premise
yt : xi < x j and evaluates its likelihood under each particle
according to:

g(yt |V k
t ) = α1(V k

t )+
1

1+ e−β(V k
t, j−V k

t,i)
, (1)

where 1(V ) = 1 if item xi is immediately below item x j (with
no intervening items) in the ranking implied by V , and 0 oth-
erwise.

When α = 0, the likelihood is simply a sigmoid function of
the difference in the positions of items xi and x j, with higher
likelihood for particles under which x j has a higher value than
xi, controlled by a scale factor β. This follows Kumaran et al.
(2016) and leads to a form of local updating, in that the like-
lihood depends only on the items observed in a given study
trial and doesn’t explicitly take into account the positions of
any other items in the hierarchy.



When α > 0, the likelihood is increased by α when x j is
ranked directly above xi and there are no intervening items.
This reflects the fact that participants in the behavioral study
were informed that the premises represented adjacent pairs
of individuals in the chain of command. Accounting for this
constraint should lead to a form of global updating where the
the latent positions of other items would affect the likelihood
even though they are not presented on the current trial.

RL-Elo
The RL-Elo model (Kumaran et al., 2016) was inspired by
the Elo rating system for ranking chess players based on the
outcomes of pairwise matchups. Like the particle filter, it es-
timates individuals’ positions V on a latent dimension. How-
ever, RL-Elo relies on a single point estimate of items’ po-
sitions, and therefore lacks the representation of uncertainty
of the particle filter. RL-Elo also differs in the mechanism
for updating estimates through experience, using incremen-
tal value updating in response to prediction errors about the
higher-ranked individual in each premise.

Values for all items are initialized to V0 = 0 at the start of
training. After observing a premise yt : xi < x j, the current
estimates Vt are used to calculate the probability of item x j
being ranked above xi:

p(yt |Vt) =
1

1+ e−β(Vt, j−Vt,i)
, (2)

which is again a sigmoidal function of the difference between
items’ values with a scaling parameter β. Values for the
higher- and lower-ranked items in the premise are then up-
dated in response to prediction errors as follows:

Vt+1,i =Vt,i +δ(p(yt |Vt)−1)+ ε

Vt+1, j =Vt, j +δ(1− p(yt |Vt))+ ε,

where δ is a learning rate between 0 and 1. This implies that
when a prediction error occurs (e.g., because the estimated
value of xi is higher than x j), the value of the higher-ranked
item is increased and the value of the lower-ranked item is
decreased. Finally, items’ positions were subject to random
fluctuation through the addition of noise with ε∼N (0,σd).

Simulation study
The models were trained on the sequences presented to par-
ticipants in the Chains and Jumps conditions, up to the aver-
age number of training blocks completed by participants (5
blocks). For both models, predicted accuracy on the forced
choice test was based on an optimal decision rule such that
an item was judged to be ranked higher if its underlying value
was greater than the alternative for a given test pair.

For the particle filter, performance was simulated across a
grid of values for the number of particles N and the SD of the
proposal distribution σd . I considered two variants of the par-
ticle filter based on local updating (α = 0) and global updat-
ing (α = 10) as described above. For RL-Elo the simulations
covered a range of values for the learning rate δ and the width

of the noise distribution σd . For all models the scaling fac-
tor β was fixed to 1. Performance was averaged across 5000
iterations for each combination of parameter values.

Results The top row of Figure 4 shows the overall pre-
dicted test accuracy. For both particle filter models (left two
columns), increasing numbers of particles (N) leads to higher
accuracy and approaches ceiling for N = 1000. The bottom
row of Figure 4 shows the difference between the Chains
and Jumps conditions, with higher accuracy in the Chains
condition across a wide range of parameter values for both
local (α = 0) and global (α = 10) updating. The effect is
largest when the number of particles is relatively low (peak-
ing around N = 40). As the number of particles increases
the advantage of chained study declines, and when N = 1000
the effect disappears as accuracy nears ceiling for both con-
ditions. As a preliminary evaluation of the model’s ability
to capture human performance, I found the parameter values
that minimized the RMSE between participants’ test accuracy
and the model predictions. The predicted accuracy for the re-
sulting set (N = 40, σd = 1, α = 10) is shown in the inset
of Figure 4. In addition to the difference between the train-
ing conditions, the model predicts symbolic distance effects
as seen in the behavioral results. The greatest source of er-
ror is for recall of the studied premise pairs (distance = 1),
for which the model underestimates the actual performance
in both conditions.

Across a wide range of parameter values for RL-Elo there
was little evidence for differences in performance between
the Chains and Jumps conditions. The only exception was a
small advantage for chained study when there was no noise
(σd = 0), but the high levels of accuracy in both conditions
suggest this would not be able to account for the behavioral
results.

Comparing the particle filter and RL-Elo across values of
σd illustrates the different effects of random drift on learning
under the two models. Increasing σd under RL-Elo leads to
rapid declines in performance, with drift acting strictly as a
form of forgetting. For the particle filter, random drift dur-
ing propagation also leads to some forgetting in that it re-
duces the influence of earlier premises on items’ estimated
positions. However, propagation is crucial for maintaining
diversity among the particles and allowing the model to ex-
plore for better solutions throughout training. Even for large
numbers of particles, the particle filter performs poorly when
σd is low because the particles remain anchored to their ran-
dom initial positions, while for values of σd ≥ 1 the model
performs at similarly high levels of performance.

Discussion
Past work on TI indicates that constructive processes are at
work during learning, as learners piece together a unified
mental representation of the hierarchy as premises are ob-
served. The results of the behavioral study indicate that this
process is easier when premises are presented in chained se-
quences, while training sequences without any overlap be-
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Figure 4: Top: Accuracy on the forced choice inference test from the model simulation study for the Chains and Jumps
conditions. Bottom: Difference in predicted inference accuracy between the Chains and Jumps condition.

tween successive premises leads to poorer relational learning.
This finding echoes earlier work showing benefits of chaining
in serial order learning (Foos et al., 1976; Foos, 1984) and
simpler variants of the TI task (Andrews & Halford, 1998;
Halford, 1984; Waltz et al., 1999, 2004).

A major contribution of the present work is to show that
the advantage of chained study is naturally accounted for by a
particle filter without assuming any other differences between
conditions. Importantly, the effect is tied to the approximate
nature of the particle filter, disappearing for models with large
numbers of particles that provide a finer approximation of the
full posterior. For smaller values of N, random trial-to-trial
fluctuation in items’ positions during propagation has an out-
size impact on the distribution of particles and can dilute the
effect of earlier premises. For instance, when learners in the
Jumps condition encounter the premise B < C, multiple tri-
als have passed since seeing the premise A < B, by which
point the estimated positions of A and B could have reversed
in some particles. Chained sequences appear to reinforce the
correct ordering of nearby items that are most susceptible to
the effects of such variability when the number of particles is
relatively low.

The advantage from chained study was larger for the global
updating model (α = 10) which assumed that the estimated
positions of other items were taken into account, thereby fa-
voring particles in which the items in the current premise
were adjacent in the implied order. However, the benefit

from chaining was still apparent for the local updating model
(α = 0) where the likelihood depends only on the relative
positions of the items in the current premise (regardless of
whether they are immediately adjacent in the implied order).
This suggests that a similar mechanism could explain the ad-
vantage from chained study in settings where people are un-
likely to consider unobserved elements during training, such
as when they are not informed about the underlying hierar-
chy (Markant, 2021).

Although further work is needed to fit the model to the be-
havioral data, inspection of the best-fitting particle filter from
the grid search (inset of Figure 4) suggests that the model can
reproduce the key features of the results, including the differ-
ence between training conditions and the symbolic distance
effect. A notable exception is that it underestimates recall ac-
curacy for studied premises. Under the particle filter, adjacent
items will tend to be closest in the learned representation of
the hierarchy, making it difficult to account for the U-shaped
pattern in the Jumps condition (Figure 2A). One possibil-
ity is that people rely on a form of direct memory for stud-
ied premises that is independent of the integrated map repre-
sented by the particle filter (Russin, Zolfaghar, Park, Boor-
man, & O’Reilly, 2021). An important question for future
work is how direct memory for studied premises might in-
fluence constructive processes during relational learning and
inference.
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