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Self-directed learning involves an ongoing interaction Self-directed category learning:
between active information search and sequential hy- A gap between 1D and 2D rules
pothesis testing. The hypotheses that people gener-
ate as they learn form the basis for reasoning, predic-
tion, and further exploration.
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Markant and Gureckis (2014) compared active selection and pas-
sive reception in a perceptual category learning task involving
either 1D or 2D rules. For 1D rules, selection-based learners out-
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boundaries. In both Exp. 1 and Exp. 2, matched

features led to increase in the proportion of 2D ConcIUSionS

boundaries. - Despite the ability to control the selection of training data, performance depended on whether the feature representation
- As observed by Markant & Gureckis (2014), ac- favored the generation of hypotheses consistent with the target rule (i.e., RECT and REL conditions improved learning of

curacy was negatively correlated with the aver- 2D rules but impaired learning of simpler 1D rules).

age distance of participants’ selections from the
true boundary (with the exception of 1D-DIAL

and 2D-RECT conditions in which performance

was at ceiling). - These results highlight how hypothesis generation is biased by properties of the learning environment, including the rela-
tive salience of individual features and higher-order relations. The efficacy of self-directed learning depends not only on
the ability to test hypotheses through information search, but on whether the environment facilitates the generation of hy-
potheses consistent with a target concept.

- Given self-directed control and a matched feature representation, participants were relatively efficient at learning 2D rules
(in contrast to previous evidence of poor learning under passive conditions and highly distinct feature representations).
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