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Abstract

In decisions from experience (DFE), people sample from two
or more lotteries prior to making a consequential choice. Al-
though existing models can account for how sampled expe-
riences relate to choice, they don’t explain decisions about
how to search (in particular, when to stop sampling informa-
tion). We propose that both choice and search behavior in
this context can be understood as a sequential sampling pro-
cess whereby decision makers sequentially accumulate out-
come information from each option to form a preference for
one alternative over the other. We formalize this process in
a new model, Choice from Accumulated Samples of Experi-
ence (CHASE). The model provides a good account of choice
behavior and goes beyond existing models by explaining vari-
ations in sample size under different task conditions. This
approach offers a process-level framework for understanding
how interactions between the choice environment and proper-
ties of the decision maker give rise to decisions from experi-
ence. Keywords: decisions from experience; sequential sam-
pling; decision field theory

How do people decide between options whose values are
uncertain? One common recourse is to obtain more informa-
tion prior to making a choice. For example, before buying
a car, one might test drive vehicles from different manufac-
turers, consult friends for their opinions, or even lease a car
for a year. The individual decision maker can often control
both the amount and source of experiences with available op-
tions prior to making a choice. When people play such an
active role in information gathering, their knowledge of al-
ternative options, and their ultimate choice between them, di-
rectly depends on how they explored during learning. As are-
sult, a long-standing question for researchers, policy-makers,
and marketers alike has been whether people collect the right
amount and kinds of information in order to make these deci-
sions from experience (DFE).

A common experimental tool for studying DFE is the sam-
pling paradigm, in which people decide how many outcomes
to observe from a set of gambles of uncertain value before
making a choice between them (Hertwig & Erev, 2009). Par-
ticipants collect information one sample at a time, where a
single sample is an outcome generated probabilistically from

an option according to some underlying distribution. For ex-
ample, one option may produce a reward of $3 every time it
is sampled, whereas a second, more risky, option produces
$4 in 80% of draws and $0 otherwise. In contrast to deci-
sions from description, in which the possible outcomes and
their probabilities are provided upfront to the decision maker,
in the sampling paradigm the participant learns about the op-
tions in a self-directed manner, deciding from which options
to sample and how many samples to draw.

A key question in DFE is how much information peo-
ple sample and how that experience influences their ultimate
choice. A primary measure of interest is the sample size, or
the number of draws taken prior to making a final choice. Pre-
vious work suggests that people tend to draw relatively few
samples, which can be an adaptive strategy given the structure
of the learning problem (Hertwig & Pleskac, 2010). How-
ever, small samples can also lead to predictable distortions in
the perceived value of options, such that rare outcomes are
underweighted relative to their objective probability (a rever-
sal of the overweighting typically observed in decisions from
description, resulting in what has been termed a description—
experience gap).

A number of models have been proposed to account for
DFE in the sampling paradigm (Erev et al., 2010; Gonzalez
& Dutt, 2011; Hau, Pleskac, Kiefer, & Hertwig, 2008). Al-
though these models are often quite successful at predicting
choices, a major limitation is that they do not account for how
people decide to terminate sampling. For example, a com-
mon assumption is that the number of samples collected is
determined by a single distribution that is independent of the
problem (e.g., Gonzalez & Dutt, 2011). However, in the sam-
pling paradigm and similar tasks, people adjust the amount
of information they collect depending on their goals or their
experience with the task. For example, sample size increases
when people experience higher variability in the outcomes
of an option (Lejarraga, Hertwig, & Gonzalez, 2012; Pachur
& Scheibehenne, 2012), when the decisions involve higher



stakes (Hau et al., 2008), and when the cost of collecting in-
formation is low (Rapoport, 1969).

In this paper, we propose a new model — Choice from
Accumulated Samples of Experience (CHASE) — that mod-
els the sampling and choice process in DFE as a sequen-
tial sampling process. Sequential sampling models have
been widely applied to decision making tasks to under-
stand how information sampling interacts with cognitive pro-
cesses, giving rise to dynamic patterns in choices and stop-
ping times (Busemeyer & Townsend, 1993; Edwards, 1965;
Nosofsky & Palmeri, 1997; Ratcliff, 1978). The key princi-
ple of this class of models is that people sequentially accu-
mulate samples of evidence that favor one or another option.
Our model builds on the key assumption of decision field the-
ory (Busemeyer & Townsend, 1993; Diederich, 2003), which
is that the rate of evidence accumulation is tied to the proper-
ties of the option, defined both objectively (e.g., the variance
of outcomes) and in terms of the decision maker’s subjective
evaluation (e.g., encoding, attentional fluctuation, or differen-
tial weighting of gains vs. losses). However, our model dif-
fers from decision field theory in at least two respects. First,
it uses cumulative prospect theory (CPT; Tversky & Kahne-
man, 1992) to model the attentional and subjective evaluation
process. Second, it predicts the discrete number of samples
people draw rather than response times, such that evidence is
accumulated until a threshold level of preference is reached,
indicating the option to be chosen. Thus, this approach pro-
vides a framework within which variations in external choice
environments and individual decision makers can be related
to how much information they collect and which options they
ultimately choose. In this paper, we describe the CHASE
model, showing how it can capture the dependence of sam-
ple size and choice in the well-studied sampling paradigm.
We then apply the model to a number of existing datasets to
test hypotheses about the sampling and choice process and
their interrelationship.

Choice from Accumulated Samples of

Experience (CHASE) model

Sampling paradigm

In the sampling paradigm, each decision problem typically
involves a choice between two gambles H and L with higher
and lower expected values, respectively. The gambles typ-
ically offer a chance of obtaining outcome x with probabil-
ity g, otherwise y (x,q;y). Participants are not told about the
properties of the gambles, but can learn about their payoff dis-
tributions using a set of buttons. Pressing a button produces
a random draw from the respective gamble’s payoff distribu-
tion. Participants are instructed to draw as many samples as
they wish and only then decide from which distribution to
make a single draw resulting in a real payoff.

The CHASE model accounts for both choice and sample
size through their relationship to an underlying process of
preference formation. In contrast, most if not all existing
models of DFE focus on predicting final choices between

H and L alone, often by taking into account the statistics
of the experienced sample. However, choices (at the aggre-
gate level) can often be predicted with a high degree of accu-
racy without relying on observed sampling sequences (Erev
et al., 2010). Accordingly, we test the CHASE framework
with choice and sample size data, and we subsequently eval-
uate its ability to account for a number of existing findings in
the sampling paradigm. Regardless of whether we model ag-
gregate or individual-level data, one distinct advantage of our
approach is that the theory is specified analytically, allowing
us to fit the model with maximum likelihood estimation.

The model

According to the model, decisions are based on a preference
state representing the relative preference for gamble H over
gamble L. The preference state evolves over time via sam-
ples of valence information about the options, and a decision
is made as soon as the preference state exceeds a threshold
0 for one of the choice options. This threshold 0 is adopted
by the respondents at the outset of a decision problem and
determines the preference level necessary to terminate sam-
pling and choose an option. The H option is chosen when the
preference reaches the threshold 6 and the L option is chosen
when the preference reaches the threshold —6. The thresh-
olds define a discrete state space of size m ranging from —8
to O representing different levels of preference.

We assume that when a sample is drawn from an option,
it is evaluated and compared with the mean valence for the
other option, and it is this relative valence that accumulates
over multiple sampling trials. This relative evaluation pro-
cess is characterized by the drift rate d, which is the average
trajectory that preference takes over time. In particular,

V-V
cvo? '

where Vi and V, are the mean valences for each option, ot is
the variance of the valences, and c is a constant scaling factor
(for present purposes it is fixed to 2).

We model the subjective evaluation process with CPT,
thereby specifying the mean valence and variance in terms
of CPT’s utility and weighting function (Tversky & Kah-
neman, 1992). One advantage of this approach is that the
form of CPT’s probability weighting function and the asso-
ciated implications for choice have been of central interest
to experience-based decision research. Thus, as we will dis-
cuss later, the CHASE model provides a framework to model
the weighting function while controlling for different deci-
sion thresholds and other factors relevant to the sampling pro-
cess.

Due to the rank-dependent nature of CPT, the mean valence
of a gamble (x,q;y) for a set of gains x >y > 0 is

V =w(q)u(x) + [w(1.0) —w(gq)]u(y)- 2)

For the corresponding functions for losses and mixed gam-
bles, refer to Tversky and Kahneman (1992). The utility func-
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tion u(x) follows the form of CPT with

x% ifx>0
— b — ) 3
u(x) {—x(—x)a, ifx <0, ©)

where the parameter o defines the curvature of the utility
function for both gains and losses; A determines the degree
of loss aversion.

The utilities of each outcome are multiplied by the proba-
bility weights, which are obtained for positive outcomes (i.e.,
gains) by transforming the decumulative probabilities with a
weighting function w. Following Prelec (1998), we use the
two-parameter function:

w(q) = exp(=8(—inq)")). @

The 7 controls the curvature of the weighting function, which
determines the sensitivity to changes in probabilities. The &
controls the elevation of the weighting function to produce
pessimistic or optimistic weights.

Finally, the variance of the valences o?

is
o2 =52 +57, 5)

where s% and s7 are the perceived variance of each option,
which is equal to

s? = w(g)u(x) = VI + [w(1.0) = w(@)][u(y) = VI*.  (6)

We model the change in preference resulting from sequen-
tial evaluations of samples as a birth—-death chain in which
each observed outcome results in one of three effects: a tran-
sition up one state (preference in favor of the H option), a
transition down one state (preference in favor the L option),
or staying in the same state (no change) (Diederich & Buse-
meyer, 2003). These probabilities are given by

%(l—d), forj—i=—1,
Lbway (1 4 gy, forj—i=+1

py=q 2 () formi=l, )
pstaya fOI'] =1
0, otherwise,

where the transition probability p; ; represents the probability
of moving from state i to state j.! Dstay 18 a free parameter that
dictates the probability of remaining in the same state. The
transition probabilities are represented in a transition proba-
bility matrix P. An example with 6 = 2 and therefore a state
space of S = {—2,—1,0,+1,+2} is

index 1 2 3 4 5
state -2 -1 0 +1 +2
1 -2 1 0 0 0 0
P= 2 -1 pan p2 ps3 0 0 (8
3 0 0 px p3 pu O
4 +1 0 O ps3 paa pas
5 +2 0 0 0 0 1

'Equation 7 requires that the drift rate d (Equation 1) is bounded
by —1 and 1.

To calculate the predicted choice probability and sample
size distribution, we rearranged the transition matrix into the
following form:

Pr 0
R Q

where Py is a 2 x 2 identity matrix (corresponding to absorb-
ing states 8 and —0), R is an (m — 2) x 2 matrix containing the
one-step probabilities of transitioning into an absorbing state,
and Q contains transition probabilities between transient (i.e.,
non-absorbing) states.

Finally, an initial distribution defined by the vector Z with
individual elements z; gives the probability of starting in each
transient state S; and can be used to model bias towards one
option or the other. However, when choice options are coded
as H and L (whose identities are not known to the learner), an
unbiased initial distribution is more appropriate. We assumed
that the initial state was distributed according to a normalized
exponential function of the distance from the state 0,

exp(—|Si|/T
L, exp(=18;1/7)
fori=2,3,...,m— 1, where T is a temperature parameter con-

trolling how peaked the distribution is at state 0.
The probability of choosing the H or L option is

; €))

[P(H),P(L)] =Z-1-Q) "R (11)

and the conditional probability of stopping at a particular
sample size n is defined by the first passage distribution

[P(N =n|H),P(N=n|L)]=Z-Q""'-R./[P(H),P(L)],
12)
where the ./ denotes element-wise division. For derivations
of the choice probabilities and the first passage distribution,
see Busemeyer and Diederich (2010).

Model predictions

The CHASE model makes a number of predictions with re-
spect to the sampling paradigm and can capture qualitative
effects on sample size that have previously been reported.
For instance, people tend to sample longer when faced with
gambles with high variance (Lejarraga et al., 2012; Pachur &
Scheibehenne, 2012). This is predicted by the model because
the drift rate decreases with increasing variance (see Equation
1), causing the process to take longer to reach a fixed thresh-
old relative to low variance options. Similarly, increased sam-
ple sizes in the face of potential losses (Lejarraga et al., 2012)
could be accounted for by a decrease in the drift rate with in-
creased loss aversion (Equation 3).

By virtue of the weighting function in Equation 4, the
model may also be used to examine a long-standing question
in DFE research: To what extent is a distortion of objective
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Figure 1: Left: Proportion choosing the H option and model prediction across 60 problems in the TPT estimation (top) and
competition (bottom) datasets. Problems are divided by domain (gains, losses, and mixed gambles). Right: Quantiles of

observed (gray) and predicted (black) sample size distributions.

probabilities (particularly with respect to rare outcomes) re-
lated to not only choice behavior (Fox & Hadar, 2006; Her-
twig et al., 2004) but also decreased sample sizes (as would be
predicted if such distortion decreases the perceived variance
of the options)? In addition, like other sequential sampling
models of decision making, the model can account for speed—
accuracy tradeoffs by assuming that the decision threshold
can vary according to the decision maker’s goals or other fea-
tures of the task. For example, a person may adopt a higher
threshold when greater rewards are at stake, leading to larger
sample sizes and potentially a higher likelihood of choosing
the better option.

As a first step toward evaluating these predictions, we fit-
ted the model at an aggregate level to several existing datasets
and tested whether it can account for both the observed choice
proportions and distributions of sample sizes. First, using
data from the Technion Prediction Tournament (Erev et al.,
2010), we tested the model on a relatively heterogeneous set
of choice problems, including a large proportion of prob-
lems involving rare outcomes. Second, we examined whether
changes in behavior resulting from a manipulation of the
magnitude of rewards (Hau et al., 2008), an effect that ex-
isting models are unable to explain, can be accounted for by
differences in decision thresholds under the CHASE model.

Fitting datasets from the sampling paradigm

Technion Prediction Tournament (TPT)

Erev et al. (2010) conducted a modeling tournament with two
datasets that were collected using the sampling paradigm: (1)

an estimation set used to fit models, and (2) a competition
set that was then used to evaluate the models’ ability to pre-
dict choices in a different group of problems. Each dataset
contained 60 problems, with 20 problems each in the loss,
gain, and mixed domains. Each individual problem involved
a choice between a safe option with a single outcome and a
risky option with two possible outcomes. Problems in both
datasets were created using the same algorithm by randomly
generating outcomes and probabilities, with the constraint
that two-thirds of the risky options involved a rare outcome
(g<.lorg>.9).

Given that the TPT data has been used to evaluate a wide
variety of models (Erev et al., 2010; Gonzalez & Dutt, 2011),
it serves as a useful benchmark to validate the CHASE model
on a representative dataset in the sampling paradigm. We fol-
lowed the same approach as in Erev et al. (2010) to fit the
model using the estimation set and then evaluate its predic-
tions for the competition dataset. Importantly, however, the
CHASE model was fitted to maximize the joint likelihood of

Table 1: BIC scores from model fitting

TPT Hau et al. (2008)

Utility Weighting Estimation set Exp. 1 Exp. 2
— - 9282 1954 2504

— + 9183 1906 2496

+ - 9280 1907 2498

+ + 9200 1915 2507

Note: A ‘+’ indicates that the corresponding function’s parameters
were fit in the model, otherwise they were fixed at 1.
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Figure 2: Choice proportions and sample size distributions (averaged across six problems) for best-fitting models compared

with data from Hau et al. (2008).

both choices and sample sizes across all problems. This dis-
tinguishes the current approach from other models that use a
fixed sample size distribution as the basis for predictions and
that are fit to choice data alone.

A combination of grid search (for the discrete 6 pa-
rameter) and numerical optimization (Nelder—-Mead, for all
other parameters) was used to find the parameter values
that maximized the log-likelihood of the data under a given
model (summed across all observations). We compared four
CHASE models derived from a factorial combination of the
utility and weighting functions described above, and used the
Bayesian information criterion (BIC) to assess model fit (see
Table 1). The parameter values of the best-fitting model are
shown in Table 2. The best-fitting model included nonlin-
ear probability weighting (y = 1.4, d = 1) but a linear utility
function, and high variability in the starting position (T = 40,
the upper limit used in fitting, indicating a flat initial distribu-
tion), for a total of five free parameters. Note that the best-
fitting value of y = 1.4 corresponds to a probability weighting
function with underweighting of low probabilities and over-
weighting of high probabilities.

The choice proportions and sample size distributions for
the best-fitting model are shown in Figure 1. For the purposes
of comparison against existing models, for choice proportions
we computed the mean-squared deviation MSD, Pearson cor-
relation 7, and proportion of agreement Py, (proportion of
problems in which the model assigns the more frequently
observed choice a probability higher than .5). The model
was highly accurate for the estimation dataset (Pygree = .94,
r=.88, MSD = .019) and was comparable to other top mod-
els in the tournament. For the competition dataset, the results
were Pygree = .9, r = .68, MSD = .022. Relative to the top

Table 2: Best-fitting parameter estimates

TPT Hau, Exp1. Hau, Exp 2.
Choice threshold 0 2 3 5
Start point variability T 40 40 2.46
Probability of staying (psray) .68 49 46
Weighting function y 1.41 1.15 92

Weighting function & 1 1.61 1.30

models from the tournament (some of which had many more
free parameters), the CHASE model resulted in slightly lower
r and MSD values, but a higher P, than any of the reported
models (Pygree = .83 for the winner of the tournament).
Thus, the CHASE model can account for choices in a large,
representative set of DFE problems, is competitive with other
models when predicting performance on an independent test
set, and can also capture the sample size distributions in both
datasets. The best model demonstrates the influence of sam-
pling error on choices, which is sensible given the high pro-
portion of problems in these datasets that involved rare out-
comes unlikely to be experienced with small numbers of sam-
ples. Together with this underweighting of low-probability
outcomes, a simple preference accumulation process can ac-
count for both the observed distribution of sample sizes as
well as variability in choice proportions across problems.

Accounting for longer search under higher stakes

Although a number of existing models perform well on the
TPT datasets, they all lack a mechanism that can account for
changes in sample size distributions. As such, they cannot
explain variations in sample size that occur due to manipula-
tions of instructions, the structure of the option environment,
or properties of the individual decision maker.

One such effect was reported in a study by Hau et al.
(2008), whereby a manipulation of reward magnitude (by a
factor of 10) from Experiment 1 to Experiment 2 was asso-
ciated with an increase in sample size. A single set of prob-
lems was used in both experiments (see Table 3), where each
gamble involved a nonzero outcome that occurred with prob-
ability ¢ (and zero otherwise). Three problems (3, 5, and 6)

Table 3: Six problems used in Hau et al. (2008)

Decision problem XH qH XL qL
1 4 0.8 3 1
2 4 0.2 3 0.25
3 -3 1 -32 0.1
4 -3 1 —4 0.8
5 32 0.1 3 1
6 32 0.025 3 0.25




involved a large outcome that was relatively rare (¢ < .1).
Whereas people’s choices in Experiment 1 were consistent
with underweighting of these rare outcomes, in Experiment 2
people were more likely to choose the H option in those same
problems.

According to the CHASE model, these changes are pre-
dicted to occur if people adopt a higher decision threshold
when larger rewards are at stake. To evaluate whether a dif-
ference in thresholds can account for this pattern, we fitted
the model separately to each experiment using the same pro-
cedure as above. As in the TPT datasets, the best-fitting
model according to BIC included parameters for the prob-
ability weighting function only (Table 1). Most importantly,
the best-fitting values for the decision threshold 0 differed be-
tween the two experiments as expected, with participants in
Experiment 2 best described by a higher threshold. The mod-
els successfully capture the overall shift in the distribution of
sample sizes as well as a higher proportion of H choices in
those problems involving rare outcomes (Figure 2).

Discussion

The sampling paradigm has become a useful tool for study-
ing how people learn about uncertain options prior to making
a choice, and how the dynamics of sequential experience can
lead to different choices than those made in description-based
settings. However, there are no existing theories that account
for these dynamics, particularly with respect to how long peo-
ple decide to explore. A principal advantage of the CHASE
model is that it offers a framework for predicting both sam-
ple size and choice across a wide range of conditions in this
paradigm, as well as a way to interpret such variation in terms
of psychological processes related to the evaluation of ob-
served outcomes and comparison of those outcomes against
decision thresholds.

Future work will compare the predictions of the model
against alternative theories of how people make choices in
this task. Although existing models do not account for sam-
ple size in general, they are capable of achieving high accu-
racy in terms of choice data alone, suggesting that the TPT
datasets may not be diagnostic as to the underlying processes
involved in making experience-based choice. One important
goal is to expand the modeling framework presented here to
compare the role of alternative stopping and preference pro-
cesses in predicting behavior, both at the aggregate level and
for individual participants.
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