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Abstract

Self-directed learning confers a number of advantages relative
to passive observation, including the ability to test hypothe-
ses rather than learn from data generated by the environment.
However, it remains unclear to what extent self-directed learn-
ing is constrained by basic cognitive processes and how those
limits are related to the structure of the to-be-learned material.
The present study examined how hypothesis generation af-
fects the success of self-directed learning of categorical rules.
Two experiments manipulated the hypothesis generation pro-
cess and assessed its impact on the ability to learn 1D and 2D
rules. Performance was strongly influenced by whether the
stimulus representation facilitated the generation of hypothe-
ses consistent with the target rule. Broadly speaking, the find-
ings suggest that the opportunity to actively gather informa-
tion is not enough to guarantee successful learning, and that
the efficacy of self-directed learning closely depends on how
hypothesis generation is shaped by the structure of the learn-
ing environment.
Keywords: self-directed learning, category learning, active
learning, information search, hypothesis generation

Self-directed learning (SDL) is typically characterized by
an interaction between external and internal search processes.
Active information collection and exploration of the external
environment are hallmarks of SDL (e.g., a student deciding
how to study or playing with a new toy to learn how it works).
Information resulting from this external search then influ-
ences an internal belief updating process, often conceptual-
ized as the sequential generation and evaluation of new hy-
potheses, which in turn drives subsequent information gather-
ing. This ongoing interaction is central to theories of concep-
tual discovery, including scientific inquiry (Klahr & Dunbar,
1988), explanatory reasoning (Johnson & Krems, 2001), and
sensemaking (Weick, 1995).

Although previous research has described a number of ben-
efits of SDL relative to passive learning conditions, it is less
clear how its efficacy is constrained by basic cognitive and
perceptual processes (Gureckis & Markant, 2012). Previous
work suggests that, in particular, SDL may be strongly lim-
ited by failures or biases in the hypothesis generation process.
For instance, in concept learning tasks people make effective
information search decisions when given a set of hypotheses
to discriminate, but often fail to generate alternative hypothe-
ses on their own (Tweney et al., 1980). Biased hypothesis
generation may be especially impactful in real-world domains
involving large or ill-defined hypothesis spaces. In education,
some researchers have argued against pedagogical practices
which emphasize self-directed discovery because students of-
ten fail to generate the target concept in the absence of guid-
ance that narrows the hypothesis space (Mayer, 2004). Thus,
understanding the hypothesis generation process is critical to

being able to predict whether SDL will be effective depend-
ing on the nature of the learning problem.

Self-directed category learning
A recent study by Markant and Gureckis (2014) suggests that,
indeed, the benefits of SDL depend closely on the structure of
the target concept. The authors compared passive reception
and self-directed selection in a perceptual category learning
task (see stimuli in Figure 1, left), in which the target clas-
sification rule was either one-dimensional (1D, a criterion
on a single feature dimension) or two-dimensional (2D, re-
quiring the integration of both feature values). Reception-
based learners observed stimuli generated from bivariate nor-
mal distributions corresponding to each category, whereas
selection-based learners chose items to learn about by spec-
ifying the feature values. Selection led to higher accuracy
than reception among those participants learning 1D rules. In
contrast, in the 2D case selection was no better than recep-
tion, and participants in both conditions were well-described
as responding according to simpler 1D hypotheses.

The goal of the present study was to examine whether
this divergence between selection-based learning of 1D and
2D rules was caused by a biased hypothesis generation pro-
cess. The experimental manipulations were motivated by an
account of hypothesis generation as involving the sampling
of salient cues and relations in the environment (Trabasso,
Bower, & Gelman, 1968; Wallach, 1962). Accordingly, the
success of SDL should depend on whether the feature repre-
sentation facilitates the generation of hypotheses that are of
the same form as the target rule. Poor learning of 2D rules
in Markant and Gureckis (2014) may have been driven by
stimuli with highly distinct dimensions that encouraged the
generation of 1D hypotheses, rather than 2D hypotheses that
involve integrating two dimensions. In contrast to existing
theories of category learning that assume inherent differences
in the difficulty of acquiring 1D and 2D rules (e.g., Ashby,
Paul, & Maddox, 2011), under this proposal the ability to
learn either type of rule through SDL depends on whether the
feature representation encourages the generation of hypothe-
ses of the same form.

Experiment 1
The first experiment examined the effect of perceptual fea-
ture representations on self-directed category learning. Peo-
ple were predicted to be more likely to generate 1D hypothe-
ses when stimulus features are highly separable or it is diffi-
cult to combine information about their relative magnitudes,
a bias that should facilitate the learning of 1D target rules.
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Figure 1: Example stimuli in the DIAL (left) and RECT
(right) conditions in Experiment 1. Dotted lines indicate the
set of target classification rules. Axis-aligned lines corre-
spond to 1D rules, diagonal lines correspond to 2D rules.

Conversely, people may be more likely to generate 2D hy-
potheses when the two feature values are easily compared or
combined, leading to faster learning of 2D target rules. In
both cases, a mismatch between the feature representation
and the form of the target rule (e.g., highly separable dimen-
sions when learning a 2D rule) should lead to a longer internal
search process and slower learning.

The task involved classifying shapes defined by two con-
tinuous feature dimensions into two categories, A and B (Fig-
ure 1). Each participant was assigned to learn either a 1D or
2D rule involving one of two types of stimuli, dials or rectan-
gles. Dials were composed of a circle that varied in radius and
a line segment that varied in orientation, whereas rectangles
were defined in terms of their height and width. Participants
learned to categorize stimuli through self-directed selection,
such that on each trial they chose a combination of features
and observed the true category label for that stimulus.

Previous studies involving dial stimuli have shown that the
two feature dimensions (radius and angle) are highly separa-
ble (Shepard, 1964), whereas rectangle stimuli are perceived
in an integral manner, with the dimensions of shape and size
more salient than width and height (Macmillan & Ornstein,
1998). Based on this perceptual distinction, participants in
the RECT conditions were expected to be more likely to gen-
erate 2D hypotheses that involved integrating both features,
and as a result, to learn 2D rules more effectively than when
stimuli are represented as dials.

Participants and materials
One-hundred twelve participants were recruited from the MPI
subject pool (66 female, 44 male, 3 no gender given; Mage =
25.1, SD = 5.2) and were paid 7AC for participation in addi-
tion to a bonus based on their performance. Participants were
randomly assigned to one of four conditions: 1D-DIAL, 1D-
RECT, 2D-DIAL, or 2D-RECT. In addition, they were ran-
domly assigned one of four possible variants of the target rule
corresponding to rotations of the rule in the stimulus space.

Test items corresponded to a grid of 256 stimuli that uni-

formly tiled the feature space. This grid was partitioned into
8 blocks, each of which included 8 stimuli from every quad-
rant of the stimulus space, for a total of 32 items in each test
block. The order of test items within each block and the order
of the eight test blocks were randomized for each participant.

Procedure
The experiment was presented in a web browser using the psi-
Turk software (Gureckis et al., 2015). There were 8 blocks in
total, each comprised of 16 learning trials followed by 32 test
trials. Participants received .02AC for every correct classifica-
tion during test trials, for a total possible bonus of 5.12AC.

Learning trials On each learning trial a stimulus was ran-
domly generated (with feature values drawn from a uniform
distribution over their respective ranges) and displayed on-
screen. The participant could then simultaneously vary the
features by moving the mouse, with vertical mouse movement
controlling one feature dimension and horizontal movement
controlling the second feature dimension. The mapping be-
tween mouse directions and feature dimensions was random-
ized for each participant. After adjusting the feature values
as desired, the participant pressed the spacebar to query the
selected stimulus, after which the category label (A or B) was
displayed until the participant pressed a button to complete
the trial.

Test trials In each test trial a single test item was displayed
at the center of the display. The participant categorized the
item by pressing A or B on the keyboard at their own pace. No
feedback was provided during test trials. At the conclusion of
each test block, participants were told the proportion of items
they classified correctly during that block.

Results
Classification accuracy Accuracy across blocks in shown
in Figure 2A. A 2×2 ANOVA on overall classification accu-
racy (averaged over blocks and rule variants) was performed
with stimulus (DIAL vs. RECT), rule (1D vs. 2D), and stim-
ulus × rule interaction as factors. There was no main effect of
stimulus type (F(1,108) = 2.4, p = .12), but there were sig-
nificant effects of rule type (F(1,108) = 22.6, p < .001) and

Table 1: Classification accuracy.
Pairwise comparisons (Tukey HSD)

Experiment 1 M (SD) 1D-RECT 2D-DIAL 2D-RECT

1D-DIAL .94 (.04) * .13 [.07, .19] * .23 [.17, .29] * .06 [.01, .12]
1D-RECT .81 (.08) * .09 [.03, .15] * .07 [.02, .13]
2D-DIAL .71 (.09) * .17 [.11, .23]
2D-RECT .88 (.09)

Experiment 2 M (SD) 1D-REL 2D-ABS 2D-REL

1D-ABS .95 (.06) * .08 [.02, .15)] * .18 [.12, .25] * .08 [.02, .16]
1D-REL .86 (.11) * .09 [.03, .17] .00 [–.07, .06]
2D-ABS .76 (.10) * .09 [.02, .16]
2D-REL .86 (.12)
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Figure 2: Classification accuracy in Experiment 1 (A) and Experiment 2 (B). Error bars indicate standard errors.

the stimulus × rule interaction (F(1,108) = 94.4, p < .001).
Tukey HSD tests indicated significant pairwise differences in
accuracy between all four conditions (see Table 1).

Two-sample t-tests were used to assess effects of rule vari-
ants within each condition. For 1D rules, participants were
grouped according to the relevant feature dimension (i.e., ra-
dius, angle, width, or height). For 2D rules, participants were
grouped according to whether the target rule was positively
sloped or negatively sloped. In the 2D-RECT condition, pos-
itive and negative 2D rules are hereafter referred to as shape
and size rules, respectively. There was no difference between
rule variants in the 1D-RECT (t(11.6) = .34, p = .74) and
2D-DIAL (t(23.9) = .92, p = .36) conditions. Within the
1D-DIAL condition, participants learning a rule defined on
the angle dimension were more accurate than those learning
a rule on the radius dimension (t(19.5) = 4.2, p < .001). Fi-
nally, within the 2D-RECT condition, accuracy was higher
for participants learning a shape rule as compared to those
learning a size rule (t(13.1) = 6.9, p =< .001).

Modeling classification boundaries The goal of the sec-
ond analysis was to relate classification performance to the

form of hypotheses generated in each condition. Bayesian lo-
gistic regression was used to estimate linear decision bounds
for each block of test responses, using the bayesglm function
within the arm R package. Four models were estimated for
each block: a 2D model with both features as predictors, two
1D models with a single feature as a predictor, and a baseline
(intercept-only) model. Decision boundaries were then clas-
sified according to the model with the lowest AIC (thirty-two
blocks, or 4%, were best-fit by the baseline model, indicating
that there were few cases in which a linear decision boundary
was not supported by participants’ responses). The propor-
tion of 2D boundaries across blocks is shown in Figure 3A.

Logistic regression on the proportion of 2D rules revealed
significant effects of stimulus type (RECT: Wald z = 6.0, p <
.001), rule type (2D: z = 5.8, p < .001), and the stimulus
× rule interaction (z = −4.7, p < .001). As shown in Fig-
ure 3A, in the 1D-DIAL and 2D-RECT conditions, nearly all
participants respond with a rule of the correct form through-
out the task. This included 2D-RECT participants learning a
size rule who responded with relatively low accuracy, indicat-
ing that the poor performance in that condition was not due
to a failure to consider 2D hypotheses. In contrast, in both
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Figure 3: Proportion of best-fit decision boundaries classified as 2D. Within each condition, a separate line is shown for
participants learning each type of target rule.

the 1D-RECT and 2D-DIAL conditions, decision boundaries
were approximately equally divided between 1D and 2D hy-
potheses, suggesting that the manipulation of stimulus repre-
sentation had the predicted effect on the kinds of hypotheses
that were generated during learning.

Discussion

The results confirmed the hypothesis that the success of self-
directed learning depends on a match between the target rule
and salient features of the stimuli. In addition to replicat-
ing the difference in performance between 1D-DIAL and 2D-
DIAL accuracy observed by Markant and Gureckis (2014),
this gap in performance was reversed by changing the stimu-
lus representation in the RECT conditions. The model-based
analysis of rule use indicates that poor performance in the
1D-RECT and 2D-DIAL conditions was due, at least in part,
to the generation of hypotheses of the wrong form.

In the 2D-RECT condition, performance diverged strongly
depending on the form of the target rule, with higher accu-
racy among participants learning the shape rule than the size
rule. However, rapid learning of the shape rule may be un-

surprising given that the category boundary coincided with a
simple relational comparison of the two features (i.e., whether
the shape is taller than it is wide). The same general pattern
was reported by Ashby and Gott (1988, Exps. 1 and 2) using
similar stimuli (perpendicular line segments) under passive
training. They found that participants were close to optimal
performance when learning a positive, 2D classification rule
that required comparing the lengths of the two line segments.
When tasked with learning a 1D rule with the same stimuli,
participants still responded according to 2D rules that inte-
grated the two features. The authors concluded that the ease
of comparing the two features led people to adopt 2D deci-
sion rules despite being able to separately attend to individual
features. The present results show that this interference gen-
eralizes to other types of stimuli, and, more surprisingly, has a
persistent effect under self-directed conditions despite learn-
ers’ control over the training experience. This effect is par-
ticularly striking in the 1D-RECT condition in which, even
on the last block of training, more than a third of participants
responded according to some form of 2D hypothesis.
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Figure 4: Example training trial displays in the ABS (left)
and REL (right) conditions in Experiment 2.

Experiment 2
The goal of the second experiment was to evaluate the gen-
eralizability of the previous findings to an abstract domain
in which perceptual biases were minimized. The task was
designed to be structually equivalent to that of Experiment
1, while involving stimuli defined by abstract numerical fea-
tures. As in Experiment 1, hypothesis generation was biased
by manipulating the ease with which the two feature values
could be integrated (see Figure 4). In the relative (REL)
condition, the two features had the same range and were de-
scribed in the same units. The common scale was predicted
to cause participants to generate hypotheses based on inte-
grating information about the two features. In the absolute
(ABS) condition, the features had different ranges and were
described in terms of different units. Like the DIAL condi-
tion in Exp. 1, the ABS condition was predicted to increase
the likelihood of generating 1D rules involving a single di-
mension. Moreover, there should be an interaction between
the stimulus representation and the target rule, such that SDL
is most effective when the feature description facilitates the
generation of the correct form of rule.

Participants and materials
One-hundred twenty people were recruited from the MPI par-
ticipant pool (54 male, 62 female, 4 no gender given; age:
M = 25.2, SD = 3.3) and were paid in the same manner as in
Experiment 1. Participants were randomly assigned to one of
four conditions: 1D-ABS, 1D-REL, 2D-ABS, or 2D-REL.

The goal of the task was to learn how the amount of two
substances (a Chemical and a Fertilizer) affected whether a
patch of virtual farmland would experience a successful (S)
or failed (F) crop. Stimuli were defined by two continuous
dimensions corresponding to the quantities of each substance.
Within each target rule condition (1D or 2D), participants
were assigned one of four possible variants of the target rule
corresponding to different rotations of the rule in the stimu-
lus space. In addition, the target rule was offset such that the
classification boundary did not bisect the stimulus space.

In the ABS conditions, the two substances were defined in
terms of different units (kg or liters) and had different ranges
(one feature ranged from 0 to 50 while the second ranged
from 0 to 10). In the REL conditions, both dimensions had
the same range (0 to 40) and were labeled as percentages of a

mixture applied to the soil (see Figure 4).

Test items A set of 32 items were generated by tiling the
stimulus space at even intervals. Test sets were generated
by randomly perturbing the location of each coordinate by
a small amount (5% of the range on each dimension) while
ensuring a constant number of items from each category. The
order of test items and the order of the eight test blocks were
randomized for each participant.

Procedure

The participants’ goal was to learn how different feature com-
binations affected whether a patch of farmland would experi-
ence a successful or failed crop. Aside from the cover story
and stimuli, the structure of the task was identical to that of
Experiment 1. Participants completed 8 blocks, alternating
between 16 learning trials followed by 32 test trials.

Learning trials On each learning trial an image of an
empty plot of land appeared above two input boxes cor-
responding to the features. Each input was labeled with
the name of the feature, the corresponding units (“kg” and
“liters” in the absolute condition; “%” in the relative condi-
tion), and the possible range of each feature (Figure 4). Both
features were initialized with values drawn from a uniform
distribution over the corresponding ranges. Participants could
then alter the value of either dimension by entering a new
number within the allowed range. They then clicked a button
to test the chosen combination of feature values. If the com-
bination led to a successful crop, a new image appeared with
fruit on the plot of land and the category label “Success!”. If
the combination led to a crop failure, a new image without
fruit appeared along with the category label “Failure.”

Test trials Each test trial began with the presentation of the
image of an empty plot of land and a test item. Stimulus
values were displayed in the same manner as in learning tri-
als but could not be altered by the participant. Participants
clicked on the outcome that they predicted to occur for the
displayed feature combination. At the end of each block they
were told their proportion of correct predictions.

Results

Classification accuracy Accuracy across blocks in shown
in Figure 2B. Two participants (one in the 1D-ABS condi-
tion and the other in the 2D-REL condition) were excluded
from further analysis because their overall accuracy was more
than three standard deviations below the mean of their con-
dition. A 2 × 2 ANOVA on overall classification accuracy
(collapsed across rule variants) was performed with stimulus
(ABS vs. REL), rule (1D vs. 2D) and stimulus × rule inter-
action as factors. There was no main effect of stimulus type
(F = (1,114) = .09, p= .76), but there was a significant main
effect of rule type (F(1,114) = 25.5, p < .001) and a signifi-
cant stimulus type × rule type interaction (F(1,114) = 23.6,
p < .001). Tukey HSD tests indicated significant pairwise
differences in accuracy between conditions, with the excep-



tion of 1D-REL and 2D-REL conditions (see Table 1).
Two-sample t-tests were used to assess effects of rule vari-

ants on overall accuracy within each condition. Overall accu-
racy was higher for learning rules on the Fertilizer dimension
in the 1D-ABS condition (t(19.9) = 3.2, p < .01) but the dif-
ferences within the remaining conditions were not significant.

Modeling classification boundaries The same method
from Experiment 1 was used to categorize participants’ de-
cision boundaries as 1D or 2D. Logistic regression on the
proportion of 2D rules revealed significant effects of stimu-
lus type (REL: Wald z = 5.0, p < .001), rule type (2D: z =
8.1, p < .001), and a stimulus × rule interaction (z = −3.6,
p < .001). The proportion of 2D boundaries are shown in
Figure 3B, separated by target rule. The manipulation of fea-
ture representation had the predicted effect on the generation
of 2D rules, albeit to a lesser extent than seen in Experiment
1. In the 1D-ABS condition the proportion of 2D rules was
very low, whereas in the 2D-REL condition the proportion of
2D rules consistent with the target is high. Finally, in the 1D-
REL and 2D-ABS conditions, there was a higher proportion
of decision boundaries that were of a different form than the
target rule.1

Summary
The present findings show that, in both perceptual and ab-
stract domains, the efficacy of SDL is limited by biases in
the hypothesis generation process. In addition to replicat-
ing the gap in performance between 1D and 2D rules found
by Markant and Gureckis (2014) in both domains, this gap
was eliminated through simple manipulations of the stimuli.
When the stimulus representation facilitated the generation of
hypotheses consistent with the true rule, self-directed learn-
ers were more likely to classify items using a hypothesis of
the same form. When hypothesis generation was inconsistent
with the target rule, self-directed learners were less success-
ful at learning the category structure despite their ability to
control the selection of training data. This impairment is per-
haps most striking in the 1D-RECT and 1D-REL conditions,
in which the learning of simple 1D rules suffered because
participants were more likely to respond according to 2D hy-
potheses.

This study was motivated by one account of the hypothesis
generation process, involving the sampling of salient cues or
relations from the environment to form hypotheses about an
underlying structure or concept (Trabasso et al., 1968; Wal-
lach, 1962). The present findings suggest that the success of
SDL depends on the way that hypothesis generation is shaped
by the environment, including how materials guide attention
and set the stage for the perception of relevant features or re-

1The same analysis was performed on participants’ selections
during training (rather than test responses) to evaluate whether bi-
ased information sampling contributed to these results. However,
the proportion of best-fit 2D boundaries indicated that participants’
selections strongly supported the correct form of rule in both Exp. 1
(1D-DIAL: .08; 1D-RECT: .02; 2D-DIAL: .93; 2D-RECT: .91) and
Exp. 2 (1D-ABS: .06; 1D-REL: .08; 2D-ABS: .86; 2D-REL: .88).

lationships (Goldstone, Landy, & Son, 2010). It is important
to note, however, that a number of other hypothesis gener-
ation mechanisms have been proposed, including processes
based on memory retrieval (Dougherty, Thomas, & Lange,
2010) and local adjustment of existing hypotheses (Bramley,
Dayan, & Lagnado, 2015). An important goal of future work
is to understand how these generation processes interact in or-
der to guide information search during self-directed learning.
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